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Abstract. The gage theoretic zpprcach to the L-J model pvidea  a tool to investigate its 
elenmagnetic pmpenies and hence those of the &prate superconductors, which are modelled 
by this Hamiltonian. In a previovs letter we ptkscnted a calculation, within the gauge field 
awmach, of the Hall effeu. In this paper we shall expiair, in greater &ail the method used 
and cntcnd this analysis to pmvide the framework from which higber-oder effects, such 81 the 
magnetoresistance. c m  be calculated. We also consider a further set of terms (the ‘Gaussian 
8uucwations’). expanding upon those published. 

1. Introduction 

The electromagnetic properties of the normal state of the high-Tc superconductors (HTsC) 
display, for example, unusual temperature dependencies when compared with those of a 
normal Fermi liquid, e.g. the temperature variations of the in-plane conductivity [l, 21 
and Hall angle 13, 41. The physics of the HTSC in such situations is believed to be 
essentially that of the electrons in the copper-oxygen planes, for which the proposed 
microscopic Hamiltonian is the two-dimensional, repulsive and single-hand Hubbard model 
on a square lattice [5,61, in the strong correlation limit (U >> I ) .  This Hamiltonian may be 
further approximated by the I-J model [7,8], an effective Hamiltonian in the constrained 
subspace of no double occupancy, with the consaaint dealt with by use of the slave particle 
representation p, 10, 111. me low energy, continuum and imaginary time Lagrangian 
density reads [12, 131: 

where 7’. yo is the bosonic ‘holon’ field, ye, ye (a =f, 4) are the femionic ‘spinon’ fields 
and U is a U(1) ‘internal‘ gauge reflecting the local gauge symmetry present in the original 
r-J Hamiltonian in the slave particle representation, where the temporal gauge, i.e. a0 = 0, 
has been chosen. 

The electromagnetic response of the system described by (1) is, in principle, 
straightforwad to analyse and may be approached by two methods, in both of which only 
one slave, which we shall take to be the holon, carries physical charge. One of these 
methods is that of Ioffe and Kotliar [14] and Lee and Nagaosa 113, 15, 161, based on the 
result that the sum of the holon and spinon currents, J n  and J F ,  respectively, is zero (the 
‘current constraint’), with these currents also related to the physical electron c m n t  (J) 
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by J = JF = - J B .  Taking the slaves to possess unphysical analogues of the physical 
responses, the slave currents are then driven by either the internal electric and magnetic 
fields, from a, if uncharged, or by these plus the external fields, if charged. Thus, given 
the slave currents, the electron current follows from the above current relationships and 
hence its responses under the external fields. In the other approach we again determine the 
electronic current, but now from the effective action of the external vector potenrial (A), 
S,n[A], taken to be in the same gauge as the internal field; this is the method pioneered by 
Ioffe and Larkin [17]. With the holons charged, thereby interacting with the field a + A 
(where A = -eA/c, e being the magnitude of the electronic charge and c the speed of 
light [18]), it follows that the charge current is given by -cGS,ff/SA [181, from which the 
response can be derived. In ths  article we shall be concerned with this second method, 
though we will also consider the former approach for the sake of comparison. 

In principle we may derive S.F by Fust integrating out the slave fields, as 1: is quadratic 
in these, yielding an action for just a and A, which we shall denote by S [ a ,  AI, followed 
by integrating over a. However, S is not quadratic in a, but also contains higher powers of 
a, so this functional integration Cannot be performed exactly. Instead. approximations must 
be used and we shall consider the h t  two terms in what is essentially a power series in 
h: (a) the saddle-point action, which is O(l/h) ,  described in section 2 and (b) the Gaussian 
fluctuation conhibution. O(ho) [191, described in section 3 and discussed in section 4. 
We shall find that the electronic susceptibilities can be expressed in terms of the slave 
susceptibilities. In [20], an 'Ioffe-Larkin' combination formula was derived through a first- 
principles calculation at the saddle-point level alone. A similar calculation was performed 
in [21], with the Gaussian fluctuation contribution included, but not completely, as we shall 
explain below. 

It is important to note that in calculating S.f we will do so in powers of two quantities: 
f i ,  as discussed above (although explicitly we take h = 1) and e / c  or, equivalently, powers 
of the vector potential. Furthermore, OUT approach will be to calculate, at each order in 
h, correct to some power (order) of A and we shall use order in this second sense when 
explaining the calculation of the terms in the h expansion. 

S M Munning and Y Chen 

2. The saddle-point action 

The saddle point, or classical action (Szff[A1) is defined by 

where a' = aYA1 is the classical solution for the internal gauge-field in the presence of 
the external gauge-field. In any calculation of Sdf we must work to some power of A. To 
be concrete, let us take S[a, AI through to fourth-order terms as this introduces no extra 
complications and illustrates the method. Therefore: 

S [ a ,  AI = 4 n,",%ub + n f b ( U a  f &)(ob f &)I 
+; k h a a b a c  + r f b c ( u a  f &)(ab  + i b ) ( U c  + i c ) ]  

+& [a:bcdanubacud f &(an f i a ) ( U b  + A b ) ( &  + &)(ad  f i d ) ]  

[ 

(3) 

where each subscript is a coordinate and a discrete element, so A. ff A&), with repeated 
subscripts indicating an integral over the coordinate and a sum over the discrete element. 
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The IIs have been described in 112,131 and the rs in [ZO, 21,221, but the four-field vertices 
have not been previously discussed and are given by 

Az6.d = (1 /3! )[ - (J :J tJ :J j )c  
+(I/%) ( (J :J tPcd)c  f tJ:JfPbd)c + (J:J:Pbc)c 

+ ( J t J f P o d ) c  + ( J ; J : b c ) c  + (J:JiPab)c) 

-(1/d) ( (6'nbPcd)c + (PocPbd)c f (PadPbe)s) ]  (4) 

where the superscript a = 0. t, -1, as in (1) while (. . indicates that only connected graphs 
are present and Pob ~(XI)GA,S(XI - nz), pa and J" being the conventional number and 
current densities for the~a-slave. Note also that AB =~ A', while AF = At + A+, which 
also holds for the other vertices. 

Following Schwinger 1231 we express U' as a power series in A and solve the saddle 
point equation in (2) by equating each power of A to zero. assuming A to be arbitrary. To 
be more specific. we take 

U: = YJL) Ab 4- YJfLAbAc O(A3) (5 )  

and find that GS/Su = 0 i s  solved by 

Y i i )  =.-[DnB]b (6) 

(7) YJz: = -Dad [rg IDII ieb [Dn F ~ f c  + r,&  ID^ ' l e b   ID^ Birc] 
where D = II-', with II = I I B  + nF, i.e. it is the intemal gauge field propagator. It 
follows that the classical action may then be written [Za, 251 

S&[Al = (8) 

to fourth order in A, where the vertices of the classical action, ne, fC and Ac,'are given 
by: 

2 
[e /c ]  n:&,,Ab - f [e/cI3 fib,A.AbA, + 4 [e/cI4 A:bcdA.AaA,Ad ~ 

defining: 

and A(n) (n =.l , .  . . ,4) similarly, where = E ( F )  and tS = -l(+l) ifs = F ( B ) ;  A' is 
shown diagrammatically in figure 1. Note that the classical vertices have the form of a sum 
of slave vertices, with which the extemal field interacts via screening terms, i.e. the factor 
Dn', established by the slave field of the other species: these screening factors also appear 
in the Gaussian corrections. 
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Figure 1. The founh+rder vertex in &e saddle-pint action. The dotted line is the internal 
gauge-field propagalor and the veldces arc labelled as in the text: the d i d  disc indicates the 
presence of a screening factor. 

Truncating S at the nth-order terms, uc can be solved for up to terms in the (n - 1)th 
power of A, to obtain SEff to nth order. If we next consider S to (n  + 1)th order, then 
6S/6a is as before plus an nth-order term, which cannot affect the lower-order terms of a' 
and so the S& correct to nth and (n + 1)th order only differ by an extra term in the latter, 
of order (n + 1)th in A.  Thus, given S correct to nth order in U and A, S& is also correct, 
in A, to nth order, which is not the case when the Gaussian fluctuations are included (see 
below). 

The second-order term in S& is that found by Ioffe and Larlcin [ln, from which 
the diamagnetic susceptibility kef[) and the conductivity (ua) of the electrons can be 
calculated [15, 261. It follows that the conductivity, when the holon conductivity is 
much less than that of the spinon's, varies with temperature as U& - T-', which agrees 
with the expimental results that are typical for optimally doped samples [2]. The third- 
order term has been given in [ZO, 211 in relation to the Hall effect, but as noted therein, 
the simplest calculation for cot&, the cotangent of the Hall angle ( 6 ~ )  was unable to 
reproduce the observed temperature and doping (6) dependency of the superconducting 
cuprates, cot& = aT2 + b(8), where b(8) N b8 [3. 41. The fowth-order term will be 
related to the (!"verse) magnetoresistance, as this effect is o( EB', along with non-linear 
corrections to the conductivity, presumably present in the third-order term too. 

To derive the magnetoresistivity from the action we must l int  calculate the 
magnetoconductivity @E), where u,N(B) = U? + u f E 2 ,  U;'' being the magnetic field 
independent part of the conductivity, previously denoted by U&. Thii may be achieved 
by use of the same device employed in the study of the Hall effect [U), 271 of taking 
A = A(') + A", where ioA(')/c = ( E ,  0.0) and ik x A(') = (0, 0, E ) ,  and examining 
just that part of the current proportional to AOAcl). We have not attempted to calculate 
the As, but we assume that A' cx - 4 / 3  [281. Now, it can be shown, by calculating the 
P as before, that r&(k, 0; k, 0; -2k. 0) = 0, which corresponds to the observation that 
there is no current term in E' alone and so the contribution to the current form the second 
term in A' is - 4 r ~ ~ ~ ~ j D i j ~ ~ A a A C A ~ ) .  Therefore, if ll&(o, 0) = -iou,"'SUp, o N 0, 
then 

U: being the magnetic-field-independent contribution to the s-slave conductivity and 
00 = OB + up, while x = X B  + X F .  The magnetoresistivity can now be calculated by 
inversion of the conductivity tensor; if UII  = u22 = U, where U = uo + U M B ~  and 
UZI = -u12 = U H E ,  then for weak magnetic fields, the diagonal components of the 
resistivity are p = PO + ApB2, with po = .l/uo and Ap = -(UM/UO + (uH/uo)~)/uo, 
the latter defining the magnetoresistivity. Substituting into this expression the effective 
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conductivities, we find that for U;! given by (16) we obtain 

where we have detined Aps = -(u;/u; + ( U ; ~ / U ; ) ~ ) / U ~ ,  s = B ,  F .  Alternatively, the 
current consmint argument could have been used and has been so by Nagaosa and Lee [I61 
and Ioffe and Wiegmann [29] who found (17) previously. Thus, as with the Hall effect 
we observe that the effective action, at the classical level, leads to the same result as that 
obtained by the current consnaint approach. Henceforth, we again again denote uiff and 
U;, respectively, by U& and us. 

3. Derivation of the Gaussian correction 

To include the Gaussian fluctuations the term 

is added to S&, which. as explained in the introduction, should be smaller than SEff by a 
factor Ofi), but thii will not be apparent, as we take h = 1. From (18) it.is clear that if 
is required to nth ordk in A, it is necessary to employ S correct to (n + 2)th order so that 
62S/SaZ is nth order, as desired. Consequently, to study the Hall effect, for which S& to 
third order is need@ [20,211, S$ must be determined from S with terms up to Bfth order in 
the gauge fields explicitly included, if we are to include all~the relevant terms consistently, 
with respect to powers of A (or e/c). 

Taking S to fifth order we 6nd that S2S/Sa2 is ofthe form n(l+ ZDI.. I]), which we 
expand using the Taylor series for h(l+ x ) ,  keeping all t e h s  to third order in A. Doing 
so, we obtain the result ~ : 

S$A] = ~ T r { l n J T ) + ' ~ n ~ & i j  + ir8k,&ijik (19) 

inncducing the Gaussian corrections n8 and P to the two-' and t%e-field vertices, 
respectively [30]. 

Explicitly, the two-field contribution is 

(20) 

shown diagrammatically in figure 2, which has the form of A' with the 'a, b' screening 
factors removed and replaced by a gauge propagator connecting these two points instead. 
From (20) we see that by including all the terms that are second order in A we obtain not 
only the corrections in [21], but also the diagrams which have so far been considered for 
the holons alone in [313, which may be seen as the lowest-order perturbation corrections to 
II arising from the interaction terms in the starting Lagrangian. 

Letting Eo&& denote the five point vertex, the threefield Gaussian correction is, 

ng. = 3'DabAi:;j - 2r&7?b,&rdaj (1) 
' I  

r!. = 6 ~ ' ~ )  kbnij z, ob - 3 [3Dnb&; (1) - 2 r ~ ~ ~ ~ b ~ z , ~ d r d ~ d o c ] z , = , c f ~ ~  
Ilk 

-w$ DbboDcd AEjk +~4'0.b r i ! v c d  r-ti n f $ k  (21) 

where the terms containing A or E are new, not being included in [21] and are displayed 
in figure 3.<Note that while r$k is not explicitly symmetric, it may readily be constructed 
to be so, but we do not give the result here. 
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Figure 2. The Gaussian correction to the semnd-order vcner, with the same notation as for 
figure. 1. 

Figure 3. The new Gaussian corrections to the thirdader vertex: (a) E(30, @) DAc'lUr"l 
and (c) r('l'D9Aa). 

Although we have not attempted to explicitly calculate the contribution of the Gaussian 
correction terms to the Hall coefficient, we can comment on the form of the result, at least 
for the &st two diagrams. Figure 3(a) depicts bare three-field slave vertices dressed with 
a single internal gauge-field propagator, which are the lowest-order perturbation comction 
to these vertices from the interaction of the slaves with this field. As we shal l  explain in 
section 4, terms such as these have already been implicitly assumed in the calculation of 
the vertices of the saddlepoint action when we included transpon lifetimes [ZO].  The term 
in A% (figure.3(b)) will lead to two corrections, as may be seen from its contribution to 
the Hall current ( S J H )  the sum of which may be expressed as 

where A( ' )  and A(" are as defined in section 2 and the c m n t  is evaluated in the limit 
k/o --f 0, where o, k --f 0 also. Therefore, we obtain 

where A' and M are the k2 and o terms of A(')D in the limits o/k + 0 and k / o  + 0, 
respectively. Note that the second conhibution is denoted by A' as it may be considered 
an amendment to the A term representing the Gaussian fluctuation correction to RH found 
in [21]. The third diagram, figure 3(c), is more complicated as we must integrate over an 
internal momentum and therefore require a more detailed knowledge of the r's and A's. 
However, as shall be shown in the next section, this term, i f  it contributes at ail to the hall 
conductivity, is O(6'). where S is the doping (hole) concentration. Therefore, this term is 
negligible in the low doping limit and so we shall not pursue it any further. 
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4. Discussion of the Gaussian corrections 

Thus far we have derived expressions, in terms of the various vertices of the slave fields, 
for the classical action of the external gauge field and the first quantum corrections to it 
through to third order in the field, where the latter terms arise from the Gaussian fluctuations 
of the internal field about its classical value. The vertices appearing, as derived from (1) by 
integrating out the slave fields, are strictly the bare vertices. However, as we have already 
noted, some of the terms in the Gaussian correction, e.g. the 6rst tenis h equations (20) 
and (21) are readily interpreted as the bare slave vertices dressed with a single gauge 
propagator. Since in principle it is possible to continue adding higher-order corrections, 
giving the complete series expansion for S.fi[A], we may postulate that a subset of the 
diagrams so obtained may be summed giving a contribution to Serf with the same form as 
S&, but expressed in terms of the fully dressed polarizations and propagator. Indeed, we 
implicitly assumed that this substitution of the bare vertices for the dressed ones is possible 
when discussing the Hall effect [ZO], while Lee and Nagaosa stated this explicitly [131. A 
notable example is the conductivity where, from the Ioffe-Larkin action, it is found that 
uerf = U B O F / ( U ~ + U , D ) .  Taking the slave conductivities to beDrude-like, i.e. u8 = nszs/,ms, 
then for u~ << U F ,  N u B  c( T-' [15,26], in agreement with experiment, as the holon's 
transport time ZB N T- ' ,  which is a result of the holon being taken to k dressed by the 
gauge field, i.e. the dressed, not bare, two-pint vertices are used. 

However, it is clear that the above procedure does not account for all the graphs obtained 
from the Gaussian fluctuations and also, presumably, for the higher-order con~butions. 
To be defiriite, let us consider the second term of in Eqn. (ZO), the presence of 
'which was noted in [21]. This term cannot be written in the IoffeLarkin l i e  form 
~s[DDn'lzn', but instead has the form E$,,* ~ ~ ' . , i ; , [ ~ n ~ l ] [ D n " . ] ~ l ~ z  (si = B ,  F ) ,  where 
nS'R represents a factor that contains a product of SI- and s2-slave responses. Such an 
expression therefore includes products of holon and spinon responses, which we shall call 
'cross' terms. Consequently, this term represents a correction to the ~offe~arkin result, 
being qualitatively different to it. Thus, it would appear that on including higher-order 
corrections, the two-point vertex is given by an expression of the form il.fr = rI$ + II&, 
where is the IoffeLarkin part, as discussed above, and nZff is the contribution from 
expressions leailing to cross terms. Of course, such contributions are possible from (I), but 
none occur at the classical level. 

As explained in [Zl],~the cross term in W does not effect the conductivity, but it 
does contribute to the diamagnetic susceptibility, an approxhte  calculation for which is 
given in the appendix as we obtain a slightly different result to that previously published. 
This correction is found to be O(S2), which is easy to understand heuristically if we note 
that the bosonic and fermionic vertices are typically O(6) and 0(1 - 6) ,  respectively, as 
functions of the doping. Since the cross terms contain at least two factors that are the 
prcduct of a bosonic and a fermionic part. the overall expression will be O(S2). This should 
be conhasted with the Ioffe-Larkin term which may be similarly argued to be O(6) and is 
therefore dominant in the low-doping limit [21]. 

However, we should compare the above with the current constraint approach [13, 311. 
This gives a 0;fr and xer that, are both in the IoffeLarkin form. i.e. no cross terms. 
Thus, while, at least to the Gaussian level, the two approaches agree as to the form of the 
conductivity, we obtain different results for the diamagnetic susceptibility. 

For the three- and higher-pint vertices we may likewise postulate. a similar 
decomposition into an 'Ioffe-Larkin' and cross term  contribution. It follows that, if the 
above doping arguments hold, in the low-doping limit the former term dominates and this 
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appears to be the case, at least for the three-point,vertex [Zl]. Consequently, for the Hall 
effect, we would regain the results obtained previously [20]. 

5. Cnnclusions 

In this paper we have examined the effective action (Sen) of an elecimmagnetic 6eld 
interacting with the model given by (1) by deriving first the classical (saddle-point) 
action, which we employed in a previous paper [20] and secondly including the Gaussian 
fluctuations about the classical field. We noted that for a starting action c m t  to nth order 
in the gauge fields we would obtain the classical action correct to nth order too, but the 
Gaussian correction only to (n - 2)th order. We then examined the magnetoconductivity 
using the classical action, obtaining the same result as that obtained from the cumnt 
constraint argument. We derived the Gaussian correction explicitly through to third order, 
nodng the presence of ‘cross’ terms in the slave fields and proceeded to speculate about the 
form of the higher-order corrections. We noted that such terms lead to results that appear 
to disagree with the current constraint approach. Finally, we approximately calculated the 
second-order correction to the diamagnetic susceptibility from the cross term, obtaining a 
different result to that previously published [XI. 
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Appendix A. Approximate calculafinn of the cross-term contribution to xfl 
If we denote by nx the cross term in IT, then we may express it as 

S M Manning and Y Chen 

where p = @.bo), q = (9. bm), b, = 2 ~ l T  and 

r“ug,(kl; kz; k 3 )  = [ 6 t , + t ~ + ~ , , . o ( ~ ) ’ / T l ~ ~ , ( k i ;  kz) 
T being the temperature. Converting the Matsubara sum to an integral over the real 
hquency U‘ and analytically continuing the free Matsubara frequency to U,  produces 
two terms in the integrand of the form q6,Cp + q, +(U + o’ +io+); -q, -+(d + io+)). 
To calculate the contribution to xe[f we take the l i t s  U ,  k + Of, such that o/k + 
O+.Therefore, we evaluate the rs at o = 0 and for convenience at q = 0 too, as we can then 
express them in terms of the Hall conductivities (0;) using i=&@, {(o’+iO+); --p, 0) = 
[&Bp, - 6p,p , lu’u; /~  [m]. It follows that f i s ~ s ~  is purely transverse, k ing  
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with P indicating a principle value frequency integral while 0; and 0; are the longitudinal 
and transverse components of the retarded gaugefield propagator [32]. Denoting the term 
in braces by X, the conhibution to ,yen of nx (x,",) is 

x = x E  + x F  and so in the low doping limit ~2 = O(&. ?his has a different form to that 
in [ZlI,since with the present result, as d + 0, the holons and spinons appear in a similar 
manner, while in the cited reference, only the term in the spinon Hall conductivity remains. 
This is because, in the latter calculation, the zero-doping limit was taken for what we have 
called fi before the screening factors were included, giving an incorrect result 

X can be approximately calculated, but only at the expense of introducing an ultraviolet 
cut-off. Since, as we have noted, & = O(S2) and therefore negligible in the lowdoping 
l i t .  we shall not pursue this calculation any further here. 
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